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ABSTRACT

Hourly accumulated precipitation forecasts from deterministic convection-allowing numerical weather

prediction models with 3- and 1-km horizontal grid spacing were evaluated over 497 forecasts between 2010

and 2017 over the central and eastern conterminous United States (CONUS). While precipitation biases

varied geographically and seasonally, 1-kmmodel climatologies of precipitation generally aligned better with

those observed than 3-km climatologies. Additionally, during the cool season and spring, when large-scale

forcing was strong and precipitation entities were large, 1-km forecasts weremore skillful than 3-km forecasts,

particularly over southern portions of the CONUS where instability was greatest. Conversely, during sum-

mertime, when synoptic-scale forcing was weak and precipitation entities were small, 3- and 1-km forecasts

had similar skill. These collective results differ substantially from previous work finding 4-km forecasts had

comparable springtime precipitation forecast skill as 1- or 2-km forecasts over the central–eastern CONUS.

Additional analyses and experiments suggest the greater benefits of 1-km forecasts documented here could

be related to higher-quality initial conditions than in prior studies. However, further research is needed to

confirm this hypothesis.

1. Introduction

Convection-allowing numerical weather prediction

(NWP) models1 with horizontal grid spacings (Dx) of

approximately 4 km or less have dramatically improved

precipitation and severe weather forecasting and are

routinely used in research and operations (e.g., Clark

et al. 2016). As substantial computational resources are

needed to produce convection-allowing forecasts over

large domains, an important consideration regards

resolution—how fine should Dx be, especially for oper-

ational purposes?

Thus, many studies have examined sensitivity to Dx
at convection-allowing scales for precipitation and se-

vere weather applications (e.g., Tables 1 and 2), and

some consensus appears to have emerged. For instance,

decreasing Dx to ;1 km seems necessary to capture

intense precipitation when topographic gradients are

steep (e.g., Colle and Mass 2000; Colle et al. 2005;

Garvert et al. 2005; Buzzi et al. 2014; Schwartz 2014;

Bartsotas et al. 2017), and continually reducing Dx
clearly yields more realistic structures. There also

appears to be agreement that coarser-resolution (but

still convection-allowing) ensemble forecasts produce

better guidance than deterministic forecasts with even

higher resolution (e.g., Hagelin et al. 2017; Loken

et al. 2017; Mittermaier and Csima 2017; Schwartz

et al. 2017).

However, there remains substantial disagreement

about the necessity of decreasing Dx below 3–4kmwhen

strong orographic forcing does not primarily drive pre-

cipitation. For example, studies over Europe and Japan

found forecasts with Dx 5 1 or 2 km were better than

those withDx5 4 or 5 km (e.g., Lean et al. 2008; Roberts

and Lean 2008; Ito et al. 2017). Accordingly, operational

European and Japanese convection-allowing models

haveDx between 1.1 and 2.8 km (e.g., Baldauf et al. 2011;

Hirahara et al. 2011; Seity et al. 2011; Tang et al. 2013;

Kühnlein et al. 2014; Brousseau et al. 2016; Hagelin et al.

2017; Raynaud and Bouttier 2017; Klasa et al. 2018;

MeteoSwiss 2019), and research in Europe and Japan

has now largely turned to assessing whether reducing

Dx to ,2 km warrants the cost, which has collectivelyCorresponding author: Craig Schwartz, schwartz@ucar.edu

1Deep cumulus parameterization schemes are typically removed

with Dx # ;4 km to allow explicit representation of deep con-

vection, hence the nomenclature ‘‘convection-allowing.’’
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yielded mixed conclusions (e.g., Brousseau et al. 2016;

Barthlott et al. 2017; Hagelin et al. 2017; Ito et al. 2017;

Raynaud and Bouttier 2017).

Conversely, operational convection-allowing NWP

models over the conterminous United States (CONUS)

currently have Dx around 3km, in part because of con-

flicting conclusions regarding the necessity to further

increase resolution over the relatively flat terrain of

the central and eastern CONUS. For instance, while

several studies found 1- or 2-km forecasts provided

comparable next-day precipitation and severe weather

guidance as 4-km forecasts east of the Rocky Mountains

(e.g., Kain et al. 2008; Schwartz et al. 2009; Clark et al.

2012; Johnson et al. 2013; Loken et al. 2017), VandenBerg

et al. (2014) suggested convective storm motion could be

improved by decreasing Dx from 4 to 1km. Moreover,

within an ensemble context, Schwartz et al. (2017, here-

after S17) found 1-km 18–36-h forecasts of 1-h accumu-

lated precipitation$5.0mmwere statistically significantly

better than 3-km forecasts, which clashes with Kain et al.

(2008, hereafter K08) and Schwartz et al. (2009, hereafter

S09), who found deterministic 2- and 4-km precipitation

forecasts were remarkably similar at those precipitation

rates and forecast ranges.

These disagreements across systematic studies

(e.g., Table 1) have also been manifested by real-data

case studies over the CONUS. For example, Xue

et al. (2013) described a case where 4-km forecasts

failed to initiate a supercell but a 1-km forecast did,

while Schumacher (2015) detailed the opposite: a su-

percell and subsequent mesoscale convective system

(MCS) were accurately reproduced with Dx 5 4 km

but simulations with finer Dx failed to initiate the su-

percell. Moreover, Clark et al. (2013) noted a case

where Dx 5 1 km was needed to capture strong

supercellular updraft rotation when Dx 5 4 km was

insufficient, even though strong rotating updrafts

were produced with Dx 5 4 km for other cases.

Likewise, idealized studies in Great Plains–like en-

vironments have yielded varied conclusions and rec-

ommendations regarding Dx for operational applications
(Table 2).

Thus, approximately ten years after the first system-

atic evaluations of sensitivity to Dx at convection-

allowing scales, questions still remain about resolution

requirements, particularly over relatively flat terrain.

While the differing conclusions regarding neces-

sary Dx between the European and American studies

could be due to disparities related to geography, cli-

matology, and NWP models, differences amongst the

CONUS studies (e.g., Table 1) are more difficult to

reconcile, as they all used a common NWP model

dynamic core and examined forecasts over similar

regions.

Might differences across the various CONUS studies

be due to small sample sizes? Because high-resolution

simulations can be computationally expensive, previous

work systematically assessing sensitivity to Dx often

employed modest sample sizes; for CONUS-based in-

vestigations, at most 91 cases were examined. Although

many studies listed in Table 1 found statistically signif-

icant results, larger sample sizes are arguably needed to

attempt to reconcile different conclusions regarding

whether decreasing Dx below 3–4km over the central

and eastern CONUS yields forecast improvements.

Therefore, this paper examines sensitivity to Dx over

the CONUS for next-day precipitation forecasts with

an unprecedented sample size. Specifically, 497 corre-

sponding 3- and 1-km forecasts were evaluated with

hopes of more definitively determining whether Dx
should be decreased toward 1 km in future opera-

tional systems covering the CONUS. While Sobash

et al. (2019) used an identical dataset and found 1-km

forecasts provided better tornado guidance than 3-km

forecasts, this paper focuses on precipitation and

goes further by assessing seasonal and geographic

variations of sensitivity to Dx and relating differences

between 3- and 1-km forecast skill to broader envi-

ronmental characteristics.

2. Model configurations and case selection

Sobash et al. (2019) described case selection andmodel

configurations. For completeness, descriptions are briefly

TABLE 2. Idealized studies performed within Great Plains–like environments that examined sensitivity to Dx between 4 and 1 km.

All simulations were in deterministic frameworks. See S17 for further discussion of these studies.

Study Dx (km) Phenomena Relevant conclusions

Weisman et al. (1997) 12, 8, 4, 2, 1 Squall line 1 km best, but 4 km good enough to capture most of the structure

and evolution

Bryan and Morrison (2012) 4, 1, 0.25 Squall line 4 and 1 km broadly similar in terms of rainfall, but 0.25 km best

Potvin and Flora (2015) 4, 3, 2, 1 Supercell 4 km clearly worst, 1 km clearly best, but 3 km good enough for

operations

Verrelle et al. (2015) 4, 2, 1, 0.5 Supercell–multicell 1 km better than 2 or 4 km, with little benefit of going from 1 km to

500m; recommended 1 km for operations
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repeated here, and at times the text parallels that of

Sobash et al. (2019).

a. Case selection

A total of 497 36-h forecasts were produced with

both 3- and 1-km Dx on days with severe thunder-

storms east of the Rocky Mountains. Cases were de-

termined by consulting the Storm Prediction Center’s

(SPC) archive of severe thunderstorm events; events

were defined based on several criteria including

number of severe weather reports within a particu-

lar area, monetary damage, and fatalities (http://

www.spc.noaa.gov/exper/archive/events/introduction.html).

This case selection strategy meant forecasts were

not produced for continuous time periods, differing

from many previous studies of sensitivity to Dx over

the CONUS (Table 1). Thus, while our results are

somewhat conditioned upon observations of extreme

weather, a large evaluation domain meant there were

many null events.

Forecasts were produced for all events in the SPC

archive between 15 March and 15 July each year

between 2011 and 2016 (inclusive), corresponding

to peak severe weather season over the CONUS

east of the Rockies. We classified forecasts between

15 March and 14 June as ‘‘spring’’ and between

15 June to 15 July as ‘‘summer.’’ Forecasts were also

produced for the 2010/11, 2011/12, . . . , 2015/16, and

2016/17 ‘‘cool seasons,’’ defined as 15 October–

14 March. During the cool season, severe weather

occurs less frequently and the SPC’s criteria for in-

cluding events in its archive are relaxed; some cata-

loged events had very few (i.e., ,10) storm reports

over the CONUS that we did not simulate. Instead,

we only produced cool season forecasts for selected

events in the SPC archive, focusing on those with

relatively large numbers of storm reports (Table 3). In

total, there were 279, 140, and 78 springtime, sum-

mertime, and cool season forecasts, respectively.

b. Model configurations and initialization

Independent forecasts with 3- and 1-km Dx were

produced by version 3.6.1 of the Advanced Research

Weather Research and Forecasting (WRF) Model

(Skamarock et al. 2008; Powers et al. 2017). All forecasts

ran over an identical computational domain (Fig. 1)

spanning the entireCONUS; 1-km forecasts had exactly 9

times the number of grid points as 3-km forecasts. All

forecasts used common physical parameterizations

(Table 4), employed positive-definite moisture and

scalar advection (Skamarock and Weisman 2009), and

had 40 vertical levels with a 50-hPa top. Identical ver-

tical levels were used in the 3- and 1-km forecasts to

fully isolate sensitivity toDx. We compared 3- and 1-km

forecasts rather than say, 2- and 4-km forecasts, be-

cause most operational convection-allowing models

over the CONUS currently have Dx 5 3 km (e.g.,

Benjamin et al. 2016; Rogers et al. 2017).

The 1-km forecasts had a 4-s time step, and it was

unclear what time step to assign the 3-km forecasts to

permit the best comparison with the 1-km forecasts.

Thus, as described by Sobash et al. (2019), two 3-km

forecast sets were produced. One used a 12-s time step,

3 times larger than the 1-km time step to maintain the

3:1 ratio ofDx between the 3- and 1-km forecasts, while

the second 3-km forecast set used a 4-s time step, like

the 1-km forecasts. Altering the 3-km time step made

little difference regarding precipitation forecast skill

and climatologies, so the remainder of this paper solely

examines the 12-s time step 3-km forecasts.

Initial conditions (ICs) for all 36-h forecasts were

produced by interpolating 0000 UTC 0.58 Global

Forecast System (GFS) analyses onto the 3- and 1-km

grids (Fig. 1). GFS forecasts at 3-h intervals pro-

vided lateral boundary conditions (LBCs). Although

0.258 GFS output became available in 2015, 0.58 GFS

fields were used across all 497 forecasts for consis-

tency. Because WRF model preprocessing discards

GFS hydrometeor analyses, all forecasts began with

TABLE 3. Cool season severe weather events for which 3- and 1-km forecasts were produced. Forecasts were initialized at 0000 UTC

each day. The cool season (defined as 15Oct–14Mar) spansmonths in two years, withOct–Dec in the earlier year and Jan–Mar in the later

year (e.g., the 2010/11 cool season spanned 15 Oct 2010–14 Mar 2011).

Month

Oct Nov Dec Jan Feb Mar

Cool season 2010/11 24, 25, 26, 27 16, 22, 29, 30 31 25 1, 24, 27, 28 5, 8, 9, 10

2011/12 7, 8, 14, 16 22 17, 22, 25 18, 24, 28, 29 2

2012/13 17 17, 19, 20, 25 29, 30 10, 18

2013/14 31 17 21 11 20, 21

2014/15 16, 23 23 3

2015/16 30, 31 11, 16, 17 23, 27 21 15, 16, 23, 24 8

2016/17 28, 29, 30 17 2, 20, 21, 22 7, 19, 25, 28 1, 6, 9
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no hydrometeors (i.e., zero values), meaning a sub-

stantial spinup period was expected.

3. Verification methods

Hourly accumulated precipitation from the 3- and

1-km forecasts was compared to Stage IV (ST4) ob-

servations produced at NCEP on a ;4.763-km grid

(Lin andMitchell 2005). To facilitate this comparison,

3- and 1-km precipitation fields were interpolated to

the ST4 grid using a precipitation-conserving bud-

get interpolation algorithm (e.g., Accadia et al. 2003),

and these interpolated fields were used to produce

all verification statistics. S17 and VandenBerg et al.

(2014) both showed how interpolating 1-km forecasts

to the ST4 grid does not meaningfully impact 1-km

precipitation structures.

Objective verification statistics were produced sepa-

rately for eight geographic regions east of 1058W (Fig. 1),

where ST4 data were most robust (e.g., Nelson et al.

2016). The eight regions were nearly identical to NCEP’s

Weather Prediction Center’s verification regions (e.g.,

Blake et al. 2018) that have ‘‘approximate uniformity of

climatology and terrain’’ (http://www.wpc.ncep.noaa.gov/

rgnscr/verify.html), with the only differences involv-

ing the cutoff at 1058W and a slight southwestward

expansion of the southern plains region (‘‘SPL’’ on

Fig. 1) to encompass Texas’s Big Bend. Statistics were

also produced for various ‘‘metaregions’’ (Table 5),

including a metaregion spanning approximately two-

thirds of the CONUS composed of the union of all

eight regions in Fig. 1 (the CONUS2/3 metaregion).

We primarily focused on next-day (18–36 h) forecasts

to avoid the spinup period.

The popular fractions skill score (FSS; Roberts and

Lean 2008) was used to evaluate precipitation forecast

skill. To compute FSSs, events were defined as whether

FIG. 1. Computational domain for the 3- and 1-km forecasts. Shadings and annotations

denote eight regions used for model evaluation, while the stippled area represents a ninth

region used to verify auxiliary forecasts revisiting previous studies (section 6). Forecasts were

also verified over several metaregions composed of the union of various individual regions

(Table 5). NPL: northern plains, SPL: southern plains, MDW: Midwest, LMV: lower Mis-

sissippi Valley, GMC: Gulf of Mexico coast, APL: Appalachians, NEC: Northeast coast, and

SEC: Southeast coast.

TABLE 4. Physical parameterizations for all WRF Model forecasts. No cumulus parameterization was used.

Parameterization WRF Model option References

Microphysics Thompson Thompson et al. (2008)

Longwave and shortwave radiation Rapid Radiative Transfer Model for

Global Climate Models (RRTMG)

with ozone and aerosol climatologies

Mlawer et al. (1997); Iacono et al. (2008);

Tegen et al. (1997)

Planetary boundary layer Mellor–Yamada–Janjić (MYJ) Mellor and Yamada (1982);

Janjić (1994, 2002)

Land surface model Noah Chen and Dudhia (2001)
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1-h accumulated precipitation met or exceeded a certain

threshold, and a neighborhood length scale (r) was se-

lected that determined a local neighborhood about a

particular grid point. Then, two precipitation fields on

the common ST4 grid, A and B, were transformed into

fractional fields at the ith of Ny verification points

by dividing the number of events occurring within the

neighborhood of the ith point by the total number of

points within the neighborhood (e.g., Theis et al. 2005).

Typically, A represents a forecast field and B observa-

tions, although both A and B can be forecasts (e.g., Dey

et al. 2014). LettingAF
i andB

F
i denote fractional fields at

the ith point derived fromA andB, respectively, the FSS

for a single forecast at a particular time is

FSS(A,B)5 12
�
Ny

i51

(AF
i 2BF

i )
2

�
Ny

i51

(AF
i )

2
1�

Ny

i51

(BF
i )

2

. (1)

Letting o, f3, and f1 respectively denote ST4 observations,

3-km forecasts, and 1-km forecasts, we define FSS3, FSS1,

and FSS1–3 as FSSs obtained from comparing 3-km fore-

casts to ST4 observations, 1-km forecasts to ST4 observa-

tions, and 3- and 1-km forecasts to each other, respectively:

FSS
3
5FSS(f

3
,o), (2)

FSS
1
5FSS(f

1
,o), (3)

FSS
123

5FSS(f
1
, f

3
). (4)

The FSS ranges from 0 to 1. When A represents a

forecast and B observations (e.g., FSS1, FSS3), perfect

forecasts have FSS 5 1 and FSS 5 0 indicates no skill,

while when A and B are both forecasts (e.g., FSS1–3),

higher FSSs indicate the two fields are more similar.

Neighborhood length scales of r5 5, 25, 50, 75, 100, 150,

and 200km were used and defined as radii of a circle.

We computed aggregate FSSs (e.g., Mittermaier 2019)

for both individual forecast hours and periods spanning

multiple forecast hours; aggregate FSSs over M fore-

casts and a p–h period were obtained by summing

over i 5 1, . . . , Ny 3 p 3 M grid points in Eq. (1). By

aggregating quantities in the numerator and de-

nominator of Eq. (1) before producing final FSSs, more

weight was given to larger events and fractional ‘‘correct

negatives’’ (points where AF
i 5BF

i 5 0) did not impact

scores (Mittermaier 2019).

FSSs were calculated for both raw and bias-corrected

precipitation fields, where bias correction was perfor-

med with a probability matching approach that forced

the forecast precipitation distribution over a particular

verification region (Fig. 1) to that observed, thus, elim-

inating bias (Ebert 2001; Clark et al. 2009, 2010a,b; S17;

Pyle and Brill 2019). Even though the 3- and 1-km

forecasts sometimes exhibited different bias character-

istics (section 4), FSSs computed from bias-corrected

precipitation fields yielded identical overall conclusions

as FSSs based on raw fields, suggesting FSSs computed

from raw fields primarily measured spatial errors, not

biases. Thus, solely FSSs based on raw 3- and 1-km

precipitation forecasts are presented.

A bootstrap resampling technique (e.g., Hamill 1999;

Davis et al. 2010; Wolff et al. 2014) with 10000 resamples

was used to assess statistical significance based on differ-

ences between pairs of 3- and 1-km forecasts. The forecasts,

which were initialized at least 24h apart, were assumed to

be uncorrelated, following Hamill (1999). Thus, when as-

sessing statistical significance for a single forecast hour (i.e.,

p 5 1), we assumed all resamples were also uncorrelated.

Conversely, when analyzing statistical significance of

FSSs aggregated over several forecast hours (i.e., p. 1),

we could no longer assume resamples were independent

due to potential autocorrelations of errors within a

single forecast. Therefore, to assess statistical signifi-

cance of FSSs aggregated over more than one forecast

hour, we used a moving circular block-bootstrapping

approach (e.g., Politis and Romano 1992; Wilks 1997;

Gilleland et al. 2018) with a block length of 4 h to

preserve autocorrelations in the resampling.2

In both bootstrapping scenarios, the significance level

for differences between the 3- and 1-km forecasts

was defined as the percentile where the distribution of

resampled differences crossed zero (e.g., Davis et al.

2010). Differences were deemed statistically significant

if the significance level was 95% (5%) or higher (lower).

4. Precipitation climatologies and biases

a. Areal coverages

Areal coverages of 1-h accumulated precipitation ex-

ceeding various thresholds revealed interesting regional

TABLE 5. Definitions of metaregions used in forecast evaluation.

Metaregion Geographic regions from Fig. 1

East NEC, SEC, APL

Mississippi River

basin (MRB)

MDW, LMV, GMC

Plains NPL, SPL

CONUS2/3 NEC, SEC, APL,MDW, LMV, GMC,

NPL, SPL

2Using block lengths of 3 and 5 h did not alter conclusions

regarding statistical significance.
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and seasonal differences between the 3- and 1-km

forecasts. Because comparisons of forecast and ob-

served areal coverages over a specific verification re-

gion could be impacted by small spatial errors near

the region’s boundaries, to lessen these potential im-

pacts, areal coverages were computed over the Plains,

MRB, and East metaregions (Fig. 1; Table 5) instead

of over the eight individual regions.

1) SPRING AND SUMMER

In both spring and summer, the 3- and 1-km forecasts

usually well represented the timing of the diurnal cycle

for thresholds $5.0mmh21 (Figs. 2 and 3). However,

during springtime for precipitation rates $5.0mmh21,

both the 3- and 1-km forecasts underpredicted cover-

ages compared to observations over the Plains meta-

region (Figs. 2b–e) and overpredicted coverages over the

East metaregion (Figs. 2l–o); in both metaregions, 1-km

coverages were closest to ST4 coverages and 3-km biases

were clearly largest. Over the MRB metaregion, spring-

time 3- and 1-km biases were more similar (Figs. 2g–j),

with overprediction for precipitation rates$10.0mmh21.

Summertime coverages for thresholds $5.0mmh21

broadly echoed springtime characteristics over the

MRB and East metaregions (Figs. 3g–j,l–o), although

differences between 3- and 1-km coverages were larger

than in spring over theMRBmetaregion. Over the Plains

metaregion during summer, underprediction compared

to spring was reduced (Figs. 3b–d), with overprediction

for precipitation rates $40.0mmh21 (Fig. 3e).

At the 1.0mmh21 threshold, 3- and 1-km areal cov-

erages were generally similar. Springtime coverages

well-matched observations over the Plains and East

metaregions (Figs. 2a,k), while coverages were too low

over the MRB metaregion during spring (Fig. 2f) and

all metaregions in summer (Figs. 3a,f,k). The biggest

differences at the 1.0mmh21 threshold occurred be-

tween 18 and 24 h over theMRB and East metaregions,

where 1-km coverages were higher and earlier-peaking

than 3-km coverages during both spring (Figs. 2f,k) and

summer (Figs. 3f,k). S17 documented similar quanti-

tative springtime findings and attributed higher 1-km

coverages to spurious light rainfall streaks produced by

shallow cumulus clouds. Interestingly, the Plains meta-

region, which featured higher lifting condensation levels

than the other metaregions, lacked these streaks, as

confirmed by visual inspection of individual forecasts

and manifested by areal coverages (Figs. 2a and 3a),

suggesting they only occurred in areas with relatively

shallow, moist boundary layers.

FIG. 2. Fractional areal coverage (%) of 1-h accumulated precipitation meeting or exceeding (a),(f),(k) 1.0, (b),(g),(l) 5.0, (c),(h),(m)

10.0, (d),(i),(n) 20.0, and (e),(j),(o) 40.0mmh21 over the (a)–(e) Plains, (f)–(j) MRB, and (k)–(o) East metaregions (Fig. 1; Table 5),

aggregated over all 279 springtime (15Mar–14 Jun) forecasts as a function of forecast hour. Values on the x axis represent ending hours of

1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h). Dashed vertical lines at

hour 24 are for reference.
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2) COOL SEASON

Cool season areal coverages differed substantially

from warm season coverages, with less clearly defined

peaks and valleys (Fig. 4), as decreased solar insolation

during the cool season limited diurnally-driven precip-

itation. As forecast length increased, observed cover-

ages generally decreased, remained steady, and increased

over the Plains, MRB, and East metaregions, respec-

tively. These behaviors reflect our focus on severe

weather events (section 2a); many cool season events

produced severe weather over the Plains or the MRB

metaregion early in the forecasts before precipitation

moved northeastward. Nonetheless, in all metaregions,

3- and 1-km trends well matched those observed.

The 3- and 1-km coverages were similar at the 1.0 and

5.0mmh21 thresholds (Figs. 4a,b,f,g,k,l), with larger

differences at the 10.0 and 20.0mmh21 thresholds,

where 1-km coverages were typically higher than 3-km

coverages across all metaregions (Figs. 4c,d,h,i,m,n).

Over the Plains and MRB metaregions, 1-km cover-

ages at the 10.0 and 20.0mmh21 thresholds were

usually closest to those observed despite low biases

between 18 and 36 h (Figs. 4c,d,h,i), whereas 3-km

coverages were closest to ST4 coverages over the East

metaregion despite high biases (Figs. 4m,n). For the

40.0mmh21 threshold, both forecasts underpredicted

over the MRB metaregion (Fig. 4j), while coverages

over the Plains and East metaregions were noisy due to

small sample sizes, but nonetheless broadly consistent

with observations (Figs. 4e,o).

b. Precipitation entity size

To further understand geographic variations of areal

coverage behaviors during spring and summer, using

identical methods as K08, we examined sizes of precip-

itation ‘‘entities’’, where entity size was defined as the

area of a collection of contiguous grid points exceed-

ing an accumulation threshold. While both 3- and 1-km

entities were too large compared to those observed,

1-km entities were always smaller than 3-km entities

and closest to observations (Fig. 5), and there were

fewer 3- and 1-km entities than those observed (not

shown). These results suggest upscale growth may have

occurred too frequently in both forecast sets.

Compared to the Plains and MRB metaregions, East

metaregion entities were smaller (Fig. 5), indicative

of disorganized precipitation, while larger entities in the

other two metaregions suggested organized features

like MCSs were common. Moreover, forecast and ob-

served springtime areal coverage peaks between 1800

and 0000 UTC over the East and 0000 and 0600 UTC

over the Plains andMRBmetaregions (Figs. 2b–e,g–j,l–o)

were consistent with diurnally-driven convection over the

East metaregion and larger nocturnal systems elsewhere.

While summertime entities were smaller than springtime

FIG. 3. As in Fig. 2, but for aggregate areal coverages over the 140 summertime (15 Jun–15 Jul) forecasts.
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entities across all metaregions (Fig. 5), the decrease was

largest over the MRB metaregion, where summer-

time areal coverages usually peaked earlier than in spring

(cf. Figs. 2g–j, 3g–j). These shifts suggest more diurnally-

driven precipitation over theMRBmetaregion in summer

compared to spring, perhaps contributing to the large sum-

mertime 3-km overprediction for thresholds $10.0mmh21

(Figs. 3h–j) as over the East metaregion. Generally, both

areal coverage and entity size patterns are consistent with

observations that MCSs contribute less to warm season

FIG. 5. Average entity size (km2) over all 279 (a)–(d) springtime (15 Mar–14 Jun) 18–36-h forecasts of 1-h accumulated precipitation,

where entities were defined as collections of contiguous grid points exceeding (a) 5.0, (b) 10.0, (c) 20.0, and (d) 40.0mmh21 thresholds.

(e)–(h) As in (a)–(d), but for average entity size over all 140 summertime (15 Jun–15 Jul) 18–36-h forecasts of 1-h accumulated

precipitation.

FIG. 4. As in Fig. 2, but for aggregate areal coverages over the 78 cool season (15 Oct–14 Mar) forecasts.
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rainfall over the east coast than other areas east of the

Rockies (e.g., Haberlie and Ashley 2019).

c. Synthesis

Overall, 1-km areal coverages were typically closer

to those observed than 3-km coverages, especially for

thresholds $5.0mmh21, similar to findings from S17.

However, behaviors differed spatially and seasonally:

while 3- and 1-km precipitation forecasts overpredicted

areal coverages for some metaregions and seasons (e.g.,

East metaregion in spring), underprediction occurred in

others (e.g., Plains metaregion in spring), and 3-km

coverages were not always higher than 1-km coverages.

The smaller 1-km entities may be more prone to tur-

bulent entrainment within convective updrafts than the

larger 3-km entities (e.g., Bryan and Morrison 2012),

particularly when updrafts and entities are small, as

over the East metaregion in spring and summer

(Fig. 5). Therefore, enhanced entrainment into rela-

tively small entities may explain why 1-km coverages at

thresholds$10.0mmh21 were closer to those observed

and lower than 3-km coverages over the East meta-

region during the warm season (Figs. 2m–o, 3m–o).

Conversely, arguments concerning entrainment do

not appear to explain why 3-km forecasts had lower,

more biased, springtime coverages than 1-km forecasts

for relatively large entities over the Plains metaregion

(e.g., Figs. 2b–d). Differences between the 3- and 1-km

springtime coverages over the Plains metaregionmay be

due to improved representation of trailing stratiform

precipitation regions in 1-km MCSs, although further

work is needed to provide insights about resolution de-

pendence of MCS structures.

Finally, these collective results potentially add

nuance to prior work that documented convection-

allowing NWP models produce excessive rainfall over

the central and eastern CONUS (e.g., Weisman et al.

2008; Clark et al. 2009, 2010a; S09; S17; Schwartz et al.

2010, 2015; J13). These previous studies solely examined

forecasts over one verification region, and had we also

only computed statistics over a single area, the interesting

regional characteristics would have been unquantifiable.

Thus, future verification efforts should strongly consider

geographic heterogeneity of precipitation climatologies.

5. Daily, seasonal, and regional variations of
forecast skill

a. Statistics over the entire central–eastern CONUS

1) AGGREGATE FSSS

Aggregate FSSs over all 497 forecasts and the

CONUS2/3 metaregion (Fig. 1; Table 5) indicated 1-km

forecasts overall performed best, with statistically

significant differences between 3- and 1-km FSSs for

thresholds #10.0 mm h21 at nearly every forecast

hour for all r (Figs. 6a–c). The biggest benefit of 1-km

Dx compared to 3-km Dx occurred in spring (Figs. 6d–

f), with FSSs resembling those over all 497 forecasts

(the 279 springtime forecasts dominated statistics

over all 497). Conversely, differences between 3- and

1-km FSSs were typically small and statistically in-

significant during summer (Figs. 6g–i), especially for

thresholds $5.0mmh21. Like spring, 1-km FSSs were

regularly higher than 3-km FSSs in the cool season

(Figs. 6j–l), but statistically significant differences

were primarily confined to before 30 h; thereafter, 3-

and 1-km FSSs were typically similar. This convergence

may be related to rapid CAPE decreases after 30 h over

southern regions during the cool season (not shown), as

sensitivity to Dx was greatest under conditions with

moderate–strong forcing and large CAPE (discussed

in section 5b).

2) DAILY FSSS

On a day-to-day basis, 3- and 1-km FSSs aggregated

over 18–36-h forecasts of 1-h accumulated precipita-

tion were strongly correlated over the CONUS2/3
metaregion, with Spearman rank correlation coeffi-

cients (r) $ 0.74 (Figs. 7a–e). FSSs were typi-

cally highest in the cool season and lowest in summer

for thresholds #10.0 mm h21, while at heavier pre-

cipitation rates grouping by season was less appar-

ent. These results indicate good 3-km forecasts were

usually associated with good 1-km forecasts, sug-

gesting common ICs, LBCs, and physics may have

constrained how much corresponding 3- and 1-km

forecasts diverged.

Probability density functions (PDFs) of daily dif-

ferences between 1- and 3-km FSSs aggregated over

18–36-h forecasts of 1-h precipitation (FSS1–FSS3)

were quasi-Gaussian and further revealed differ-

ent seasonal behaviors (Fig. 7f–j). Cool season

PDFs were typically sharper than springtime and

summertime PDFs, indicating relatively small cool

season differences between 3- and 1-km FSSs were

common.

Nonetheless, despite regularly close cool season 3-

and 1-km FSSs, cool season PDF peaks were . 0, and

1-km FSSs were greater than or equal to 3-km FSSs

for a majority (i.e., .50%) of cool season cases

(Figs. 7f–j). Results were similar during springtime.

Conversely, for thresholds $10.0mmh21, summer-

time PDF peaks were ,0 and 3-km forecasts had

higher FSSs for the majority of cases. Additionally,

for the 1.0 and 5.0mmh21 thresholds, the proportion
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FIG. 6. FSSs over the CONUS2/3 metaregion (Fig. 1; Table 5) for (a),(d),(g),(j) 5-, (b),(e),(h),(k) 50-, and (c),(f),(i),(l) 100-km neigh-

borhood length scales aggregated over all (a)–(c) 497 forecasts and (d)–(f) 279 springtime (15 Mar–14 Jun), (g)–(i) 140 summertime

(15 Jun–15 Jul), and (j)–(l) 78 cool season (15 Oct–14 Mar) forecasts as a function of forecast hour. Values on the x axis represent ending

hours of 1-h accumulation periods and begin at hour 19 (i.e., the first x-axis value is for 1-h accumulated precipitation between 18 and 19 h).

FSSs are shown for different event exceedance thresholds (legend), with 3- and 1-km FSSs given by dashed and solid lines, respectively.

Circles on the curves denote instances when differences between 3- and 1-km forecasts for a particular threshold were statistically sig-

nificant at the 95% level, with the circles placed on the curve with the higher FSS. For example, black circles on black solid lines indicate

when 1-km forecasts had statistically significantly higher FSSs than 3-km forecasts at the 1.0mmh21 threshold, while blue circles on

dashed blue lines denote when 3-km forecasts had statistically significantly higher FSSs than 1-km forecasts at the 10.0mmh21 threshold.
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of summertime cases with (FSS1–FSS3) $ 0 was no-

tably lower than in the cool season and spring.

3) INVESTIGATING SEASONAL AND DAILY FSS
VARIATIONS

Results indicated both seasonal and daily varia-

tions of 3- and 1-km forecast skill and sensitivity to Dx
(Figs. 6, 7). Thus, we attempted to quantify whether

these daily and seasonal differences were associated

with specific environmental properties (e.g., instabil-

ity, forcing strength) or characteristics of the pre-

cipitation itself (e.g., areal coverage, entity size). Our

ultimate goal was to understand those situations when

forecasts with Dx5 1 km provided the largest benefits

over forecasts with Dx 5 3 km.

In aggregate, 1-km forecasts were usually better than

3-km forecasts in the spring and cool season but not

during summer (Figs. 6 and 7), and within each season,

on some days 1-km forecasts outperformed 3-km fore-

casts while on others they did not (Fig. 7). Unfortu-

nately, we could not find any field that correlated even

moderately with daily variations of differences between

1- and 3-km FSSs (i.e., FSS1–FSS3); in other words, we

were unable to unearth a robust day-to-day statistical

indicator associated with superior 1-km forecast skill

when looking for meaningful correlations both within a

single season or across all three seasons. For example, jrj

was just ;0.1 when comparing (FSS1–FSS3) with mean

CAPE over the CONUS2/3 metaregion over all 497 18–

36-h forecasts.

Although discouraging, perhaps this result should

have been unsurprising. Each daily scenario is unique,

and the physical processes determining whether a 1-km

forecast will be more skillful than a 3-km forecast

likely change from case to case, rendering it difficult to

uncover a strong daily statistical relationship be-

tween (FSS1–FSS3) and other fields. Thus, we can only

broadly conclude that 1-km forecasts were most likely

to outperform 3-km forecasts during the spring and

cool season (Figs. 6 and 7).

Despite this disappointment, we did find specific fields

that featured robust correlations with closeness of 3- and

1-km forecasts to each other [i.e., FSS1–3; Eq. (4)], pro-

viding complementary information to Figs. 6 and 7 about

sensitivity to Dx. One such field, the convective adjust-

ment time scale (tc; Done et al. 2006; Zimmer et al. 2011),

quantifies large-scale forcing strength. Following Surcel

et al. (2017), tc (seconds) was defined as

t
c
5

1

2

MUCAPE

P
3 49:58mms3 m22 h21 , (5)

where MUCAPE (Jkg21) is the most unstable CAPE at

time T and P (mmh21) is 1-h accumulated precipitation

ending at T. Small tc means the large-scale flow quickly

FIG. 7. (a)–(e) Scatterplots comparing FSSs aggregated over daily 3-km (x axis) and 1-km (y axis) 18–36-h forecasts of 1-h accumulated

precipitation computed with r 5 100 km over the CONUS2/3 metaregion (Fig. 1; Table 5) for the (a) 1.0, (b) 5.0, (c) 10.0, (d) 20.0, and

(e) 40.0mmh21 thresholds. There are 497 points per panel—one for each forecast—colored according to season, as indicated by the

legend. Spearman rank correlation coefficients (r) are shown in each panel. (f)–(j) PDFs (%) of the daily differences between 1- and 3-kmFSSs

(FSS1–FSS3) based on the data in (a)–(e) for the spring (blue), summer (black), and cool season (orange) forecasts. Annotated percentages

refer to the proportion of forecasts where FSS1 $ FSS3 (i.e., area under the curves for x $ 0) and are colored according to season (legend).
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removes convective instability, indicating strong synoptic-

scale forcing scenarios, while large tc indicates weak

synoptic forcing situations where convective instability

festers (Done et al. 2006).

Equation (5) was applied to each point with P $

0.25mmh21, similar to Flack et al. (2016, 2018), and

mean tc values were obtained by averaging over all points

within the CONUS2/3 metaregion. While many studies

explicitly defined strong and weak forcing regimes based

on tc thresholds (e.g., Molini et al. 2011; Keil et al. 2014;

Kober et al. 2014; Flack et al. 2016, 2018), we did not

make categorical distinctions and instead examined how

metrics related to forecast skill (i.e., FSSs) correlatedwith

tc, similar to Surcel et al. (2017). Moreover, because we

were only interested in relative tc values, the importance

of subjective choices like minimum precipitation thresh-

old and whether to smooth MUCAPE and P before ap-

plying Eq. (5) was diminished.

Magnitudes of tc computed from 3-km forecasts over

the CONUS2/3 metaregion were broadly consistent

with Surcel et al. (2016, 2017) and clearly delineated

the seasons: tc was smallest during the cool season and

largest in summer, with springtime tc in the middle

(Figs. 8a–j). These findings reflect flow patterns over

the CONUS that typically feature relatively strong

synoptic-scale forcing during the cool season compared

to summer. Moreover, for thresholds #10.0mmh21,

there were moderate to strong correlations between 3-

and 1-km forecast similarity and forcing strength3

(Figs. 8a–c), meaning smaller cool season and larger

FIG. 8. (a)–(e) Scatterplots comparing convective adjustment time scale (tc; x axis, in hours) from 3-km forecasts to FSSs measuring 3-

and 1-km forecast closeness (i.e., FSS1–3; y axis) computed with r 5 100 km for the (a) 1.0, (b) 5.0, (c) 10.0, (d) 20.0, and (e) 40.0mmh21

thresholds. Note that tc is insensitive to precipitation threshold but FSS1–3 is not. The values were computed by aggregating over daily 18–

36-h forecasts of 1-h accumulated precipitation and tc, respectively, over the CONUS2/3 metaregion (Fig. 1; Table 5). There are 497 points

per panel—one for each forecast—colored according to season, as indicated by the legend. Spearman rank correlation coefficients (r) are

shown in each panel. (f)–(j),(k)–(o) As in (a)–(e), but (f)–(j) y-axis and (k)–(o) x-axis values are observed (i.e., ST4) entity size (km2)

aggregated over daily 18–36-h forecasts of 1-h accumulated precipitation.

3 Increasing the minimum precipitation threshold to compute tc
from 0.25 to 1.0 and 5.0mmh21 progressively decreased domain-

average tc but did not impact seasonal delineations or correlations

with FSS1–3.
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summertime tc corresponded to more similar and dis-

parate 3- and 1-km forecasts (i.e., FSS1–3), respectively.

However, for thresholds$20.0mmh21, these associations

regarding forcing and 3- and 1-km forecast similarity did

not hold (Figs. 8d,e), possibly due to smaller sample sizes

and because tc does not effectively measure small-scale

processes often responsible for locally heavy precipitation.

Values of tc also indicate forecast quality was related to

forcing strength, with higher FSSs in more strongly forced

regimes (e.g., Figs. 6 and 7), consistent with several studies

indicating convection-allowing NWPmodels perform best

under strong forcing (e.g.,Duda andGallus 2013;Keil et al.

2014; Sobash and Kain 2017).

Forcing strength also had meaningful correlations

with precipitation entity size, with larger cool season

and smaller summertime ST4 entities associated with

stronger and weaker forcing, respectively (Figs. 8f–j).

Moreover, similar to tc, ST4 entity size was moderately

to strongly correlated with 3- and 1-km forecast close-

ness (Figs. 8k–o) and clearly demarcated the seasons,

particularly for thresholds #10.0mmh21 where sample

sizes were largest.

Although correlations have limitations for establish-

ing attribution, the relationship between entity size and

tc (Figs. 8f–j) was likely causal; large precipitation areas

are often driven by strong forcing. Also, while

MUCAPE explained tc variationsmore thanP, and thus

had similar correlations with FSS1–3 as tc (not shown),

CAPE alone is insufficient to produce precipitation.

Thus, from a physical perspective, it seems more sensi-

ble to discuss variations in forcing (i.e., tc), rather than

CAPE, as being associated with seasonal variations of

precipitation characteristics and forecast skill.

4) FORECAST SKILL AS A FUNCTION OF ENTITY

SIZE

Given that entity size had meaningful relationships

with forcing strength and 3- and 1-km forecast closeness

(Figs. 8f–o), we further examined forecast skill as a func-

tion of entity size during spring, when benefits of 1-km Dx
were greatest (Fig. 6). Methodologically, the size of

each entity within corresponding forecast and obser-

vation fields was first determined. Then, if a particular

entity’s area fell outside a preselected range, that en-

tity was discarded, ultimately yielding forecast and

observation grids consisting of solely those entities

meeting prescribed size criteria, and FSSs were com-

puted from these size-selected fields. This process was

repeated for several size bins.

Although 1-km forecasts had statistically significantly

higher FSSs than 3-km forecasts for all entity sizes, 3-

and 1-km FSSs were relatively similar for entities with

areas,10 000km2, with generally larger FSS differences

for entities with areas $10 000 km2 (Figs. 9a–c). These

larger entities corresponded to MCSs, that, while rela-

tively infrequent (Figs. 9d–f), produced a dispropor-

tionate share of rainfall; for example, just ;3% of ST4

entities at the 5.0mmh21 threshold over the CONUS2/3
metaregion had areas$10 000km2 but produced;50%

of all ST4 precipitation with rates $5.0mmh21. There-

fore, larger entities likely dominated all-size FSSs (e.g.,

Figs. 6d–f), and it appears that much springtime 1-km

improvement over 3-km forecasts was related to better

forecasts of large precipitation systems, consistent

with S17.

b. Regional sensitivities to Dx

1) AGGREGATE FSSS

During the weakly forced summer, there were few

regional differences regarding sensitivity to Dx; across
all regions (Fig. 1), 1-km FSSs were not systematically

higher than 3-km FSSs (not shown). However, there

were more regional differences in spring (Fig. 10). Over

the GMC and LMV regions, 1-km forecasts were con-

sistently better than 3-km forecasts (Figs. 10b,c), and

most differences for thresholds #10.0mmh21 were

statistically significant. The 1-km FSSs were also usually

highest over the SPL, SEC, and MDW regions

(Figs. 10a,d,f), but with fewer instances of statistically

significant differences than over the GMC and LMV

regions. Conversely, over the NPL, APL, and NEC re-

gions (Figs. 10e,g,h), 3- and 1-km FSS differences were

usually small.

Cool season regional differences before 30 h re-

sembled those in spring, except there were fewer

statistically significant differences and there were no

signals 1-km FSSs were highest over the SPL region

(Fig. 11). After 30 h, statistically significant differ-

ences between 3- and 1-km forecasts were uncommon

across all regions, reflecting FSSs over the CONUS2/3
metaregion (Figs. 6j–l).

2) INVESTIGATING SPRINGTIME REGIONAL

DIFFERENCES

Because the biggest regional differences occurred in

spring, we focus on springtime environments and pre-

cipitation properties to understand regional variations

of sensitivity to Dx. Regarding forcing strength, spring-

time tc variations across the regions were generally

small compared to seasonal changes and did not indicate

meaningfully different interregion forcing scenarios

(not shown). However, for thresholds #10.0mmh21,

MUCAPE strongly correlated with regional differ-

ences between aggregate 1- and 3-km FSSs (i.e., FSS1–

FSS3), considering all 279 18–36-h springtime forecasts
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(Figs. 12a–e). For example, at most thresholds, (FSS1–

FSS3) was largest over regions with relatively high

MUCAPE (the southernmost SPL, GMC, LMV, and

SEC regions) compared to those with smaller MUCAPE

(the four northern regions).

There were also meaningful relationships between

(FSS1–FSS3) and entity size, as regions with bigger

entities tended to have larger (FSS1–FSS3), although

the correspondence was not 1:1 across all thresh-

olds (Figs. 12f–j). Entities were biggest over the GMC,

LMV, and SPL regions, where MCSs contribute sub-

stantially to springtime rainfall (e.g., Haberlie and

Ashley 2019) and MUCAPE was relatively high.

Thus, it appears 1-km skill was maximized relative to

3-km skill during the moderately–strongly forced

springtime over southern regions, where instability was

greatest and entities were largest. Because instability

and forcing are primarily modulated by synoptic-scale

flow, these regional results, coupled with the seasonal

differences regarding sensitivity to Dx (Figs. 6–8),

suggest the potential importance of large scales and

climatology for fostering conditions when 1-km fore-

casts are most likely to yield benefits compared to 3-km

forecasts.

6. Discussion and auxiliary experiments

Our results strongly contrast K08, S09, and J13,

who all objectively assessed springtime precipita-

tion forecast sensitivity to Dx over the central and

eastern CONUS (Table 1). In attempt to reconcile our

results with theirs, we performed several additional

analyses and experiments, which included revisiting

previous work.

a. Sample size

To examine whether disparities between K08’s, S09’s,

and J13’s results and ours were due to vastly different

FIG. 9. FSSs for r5 100 km as a function of entity size (km2) aggregated over all 279 springtime (15Mar–14 Jun) 18–36-h forecasts of 1-h

accumulated precipitation for the CONUS2/3 metaregion (Fig. 1; Table 5) and (a) 5.0, (b) 10.0, and (c) 20.0mmh21 thresholds. Values

on the x axis denote beginning bounds of a particular size bin (i.e., the leftmost bin encompasses entities with areas ,500 km2). Circles

on the curves denote instances when differences between 3- and 1-km forecasts were statistically significant at the 95% level using a

block-bootstrap resampling technique (section 3), with the circles placed on the curve with the higher FSS. (d)–(f) Number of observed

(i.e., ST4) precipitation entities falling into each size bin for accumulation thresholds of (d) 5.0, (e) 10.0, and (f) 20.0mmh21.
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sample sizes (e.g., Table 1), aggregate FSSs over 18–36-h

forecasts of 1-h accumulated precipitation were

computed for each possible consecutive 35-forecast

window across all 497 forecasts; a 35-forecast window

was chosen to match the smallest sample size among

K08, S09, and J13. Across the 462 possible 35-forecast

samples, aggregate 1-km FSSs were usually higher

than 3-km FSSs (Figs. 13a–e) and the differences

were regularly statistically significant in favor of the

1-km forecasts (Figs. 13f–j). Moreover, instances

when 3-km FSSs were higher than 1-km FSSs occurred

nearly exclusively for samples composed of mostly

summertime forecasts. Therefore, these findings in-

dicate it is possible, but ultimately unlikely, that dif-

ferences concerning sample size explain our different

results relative to K08, S09, and J13.

b. Model configurations and upgrades

As sampling probably cannot explain disparities

with previous results, we examined whether changes

to the WRF Model over the past decade could be re-

sponsible. Thus, we revisited the 33-h 2- and 4-km

forecasts analyzed by S09, which were produced in

spring 2007 over three-fourths of the CONUS.

First, using the exact configurations as S09 and ver-

sion 2.2.1 of the WRF Model, we reproduced the

2100 UTC-initialized 2- and 4-km forecasts described

in S09 on a modern supercomputer.4 Then, we pro-

duced a second set of 2- and 4-km forecasts using

identical ICs and LBCs as the first, but employed the

WRF Model version (3.6.1) and configurations de-

scribed in section 2b; these configurations, in particu-

lar, the physical parameterizations, were very different

from those used in S09. We reproduced S09’s fore-

casts instead of processing archived output to preclude

the possibility that varied computing architectures

(e.g., Hong et al. 2013) could impact comparisons be-

tween the two forecast sets.

Both forecast sets were verified with S09’s methods,

which included using Stage II (Lin and Mitchell 2005),

FIG. 10. FSSs over the (a) SPL, (b)GMC, (c) LMV, (d) SEC, (e) NPL, (f)MDW, (g)APL, and (h)NEC verification regions (Fig. 1) for a

100-km neighborhood length scale, aggregated over all 279 springtime (15Mar–14 Jun) forecasts as a function of forecast hour. Values on

the x axis represent ending hours of 1-h accumulation periods and begin at hour 19 (i.e., the first x-axis value is for 1-h accumulated

precipitation between 18 and 19 h). FSSs are shown for different event exceedance thresholds (legend), with 3- and 1-km FSSs given by

dashed and solid lines, respectively. Circles on the curves denote instances when differences between 3- and 1-km forecasts for a particular

threshold were statistically significant at the 95% level, with the circles placed on the curve with the higher FSS. For example, black circles

on black solid lines indicatewhen 1-km forecasts had statistically significantly higher FSSs than 3-km forecasts at the 1.0mmh21 threshold,

while blue circles on dashed blue lines denote when 3-km forecasts had statistically significantly higher FSSs than 1-km forecasts at the

10.0mmh21 threshold.

4 The precise source code used in S09, based onWRF version 2.2,

was unavailable.
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rather than ST4 precipitation observations. While fore-

casts using version 3.6.1 of the WRF Model had mark-

edly better domain-total precipitation than forecasts

using version 2.2.1 (Fig. 14a), within both sets, relative

differences between 2- and 4-km forecasts in terms of

both domain-total precipitation and skill (Figs. 14b–f)

indicated no benefits of 2-km over 4-km forecasts,

corroborating S09.

FIG. 11. As in Fig. 10, but for aggregate FSSs over the 78 cool season (15 Oct–14 Mar) forecasts.

FIG. 12. (a)–(e) Scatterplots comparing MUCAPE (x axis; J kg21) from 3-km forecasts to differences between aggregate 1- and 3-km

FSSs (FSS1–FSS3) with r 5 100 km (y axis) for the (a) 1.0, (b) 5.0, (c) 10.0, (d) 20.0, and (e) 40.0mmh21 thresholds and different

verification regions (legend; Fig. 1) over spring. MUCAPE values were obtained by averaging over all 279 springtime 18–36-h forecasts,

while FSS values were obtained by aggregating over all 279 springtime 18–36-h forecasts of 1-h accumulated precipitation. Note that

MUCAPE is insensitive to precipitation threshold but (FSS1–FSS3) is not. (f)–(j) As in (a)–(e), but x-axis values are observed (i.e., ST4)

entity size (km2) aggregated over all 279 springtime 18–36-h forecasts of 1-h accumulated precipitation.
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Therefore, changes toWRFModel version and physics

probably do not explain differences between our results

and K08, S09, and J13. Moreover, these findings (i.e.,

Fig. 14) were insensitive to whether forecasts were veri-

fied over all forecasts or solely those corresponding to

archived SPC severe weather events (e.g., section 2a),

suggesting our case selection strategy did not introduce

biases into our 3- versus 1-km results.

c. Initial condition quality

Forecasts examined by K08, S09, and J13 were ini-

tialized from analyses produced by three-dimensional

variational (3DVAR) data assimilation (DA) systems.

However, after 2010, most operational centers began

transitioning to ‘‘hybrid’’ variational-ensemble DA

systems that, unlike 3DVAR systems, incorporate

ensemble-based flow-dependent background error co-

variances to improve use of assimilated observations.

Thus, hybrid analyses are typically better than

3DVAR analyses and initialize superior forecasts

than 3DVAR-based ICs (e.g., Hamill et al. 2011; Wang

et al. 2013; Zhang et al. 2013; Schwartz and Liu 2014;

Schwartz 2016).

NCEP’s operational GFS model transitioned from

3DVAR to hybrid DA on 22May 2012 (e.g., Wang et al.

2013), meaning 360 of our 497 3- and 1-km forecasts

were initialized from hybrid-based ICs. Therefore, we

wondered if our use of presumably better-quality ICs

thanK08, S09, and J13 was related to differences between

our and their results regarding sensitivity toDx. Although

there were no indications relationships between our 3-

and 1-km forecasts differed for pre– and post–22 May

2012 forecasts, to properly assess whether IC quality

impacts sensitivity to Dx, a set of demonstrably ‘‘good’’

and ‘‘bad’’ ICs over a common period is required.

So, we revisited the analysis systems from Schwartz

and Liu (2014, hereafter SL14), who produced continu-

ously cycling 20-km hybrid and 3DVAR analyses for a

consecutive 44-day period spanning May–June 2011 over

the CONUS and unequivocally showed downscaled

20-km hybrid analyses initialized better 4-km precipita-

tion forecasts than downscaled 20-km 3DVAR analyses.

Thus, we considered SL14’s 20-km hybrid and 3DVAR

analyses as ‘‘good’’ and ‘‘bad’’ ICs, respectively.

The 20-km hybrid and 3DVAR ICs from SL14 were

available, which we used in conjunction with the model

version and configurations described in section 2b to

initialize 36-h 2- and 4-km forecasts from 0000 UTC

analyses that were identical except for Dx and time step

(2- and 4-km ICs were produced by downscaling 20-km

analyses). FSSs comparing the forecasts to ST4 ob-

servations indicated differences between 2- and 4-km

hybrid forecasts (gray lines in Fig. 15) were typically

larger than those between 2- and 4-km 3DVAR fore-

casts (orange lines in Fig. 15), and identical results were

obtained when verifying over all 44 forecasts and solely

those forecasts corresponding to SPC severe weather

events (section 2a), again suggesting our findings about

FIG. 13. (a)–(e) Histogram of differences between aggregate 1- and 3-km FSSs (FSS1–FSS3) for the (a) 1.0, (b) 5.0, (c) 10.0, (d) 20.0, and

(e) 40.0mmh21 thresholds computed with r 5 100 km, where FSSs were obtained by aggregating over 18–36-h forecasts of 1-h accu-

mulated precipitation for each 35-forecast window over the CONUS2/3 metaregion (Fig. 1; Table 5). Values. 0 (blue) indicate 1-km FSSs

were larger than 3-km FSSs, while values , 0 (red) indicate the opposite. (f)–(j) As in (a)–(e), but for the significance level (%) of the

difference between 1- and 3-km FSSs for each 35-forecast window, as determined by a block-bootstrap resampling technique (section 3).

Significance levels.95% (blue) and,5% (red) indicate differences deemed statistically significant in favor of the 1- and 3-km forecasts,

respectively.
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FIG. 14. (a) Aggregate 1-h accumulated precipitation (mm) per grid point over 37 corresponding 2- and 4-km forecasts produced with

version 3.6.1 (‘‘2-kmV361,’’ ‘‘4-kmV361’’) and 2.2.1 (‘‘2-kmV221,’’ ‘‘4-kmV221’’) of theWRFModel as a function of forecast hour over

a region spanning the central CONUS, as in S09 (stippled region in Fig. 1). Values on the x axis represent ending hours of 1-h accumulation

periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h). (b)–(f) FSSs as a function of neighborhood

length scale (km) aggregated over 37 21–33-h forecasts of 1-h accumulated precipitation for the (b) 1.0, (c) 5.0, (d) 10.0, (e) 20.0, and

(f) 40.0mmh21 thresholds over the stippled region in Fig. 1. Symbols along the top axis indicate differences between 2- and 4-km forecasts

employing the same model version were statistically significant at the 95% level using a block-bootstrap resampling technique, with ‘‘2’’

and ‘‘1’’ symbols indicating better 2- and 4-km performance, respectively.
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3- and 1-km forecast quality were unaffected by our case

selection approach.

Therefore, when better (hybrid) ICs were used, there

were greater benefits of 2-km Dx compared to 4-km Dx
than when poorer (3DVAR) ICs were employed. These

findings suggest that perhaps improved analysis quality

can indeed translate into benefits of finer Dx at

convection-allowing scales and may explain discrep-

ancies between our findings regarding sensitivity to Dx
and those from K08, S09, and J13. Exactly why hybrid-

based analyses permitted greater benefits of smaller Dx
is unclear, but in general, if improved DA reduces large-

scale IC errors that in turn lessen large-scale errors at

next-day lead times, the smaller large-scale errors may

foster relatively uncontaminated environments in which

convection can develop and allow intrinsic benefits of

finer Dx to be realized. Clearly, much more work in both

real-data and idealized scenarios is needed to confirm

and elucidate any relationship between analysis quality

and sensitivity to Dx in convection-allowing models.

7. Summary and conclusions

This study examined 497 corresponding 3- and 1-km

forecasts over the CONUS east of the Rockies on days

with severe weather reports. Model climatologies of

precipitation revealed seasonally and geographically

varying biases and behaviors, although 1-km precipi-

tation distributions were usually closer to those observed

than 3-km distributions. Furthermore, precipitation entity

FIG. 15. FSSs as a function of neighborhood length scale (km) aggregated over 44 18–36-h forecasts of 1-h accumulated precipitation

for the (a) 1.0, (b) 5.0, (c) 10.0, (d) 20.0, and (e) 40.0mmh21 thresholds over the stippled region in Fig. 1 for corresponding 2- and 4-km

forecasts initialized from hybrid (‘‘hybrid_2km,’’ ‘‘hybrid_4km’’) and 3DVAR (‘‘3DVAR_2km,’’ ‘‘3DVAR_4km’’) analyses. Symbols

along the top axis indicate differences between 2- and 4-km forecasts using the same analysis method (i.e., 3DVAR or hybrid) were

statistically significant at the 95% level using a block-bootstrap resampling technique, with ‘‘2’’ and ‘‘1’’ symbols indicating better 2- and

4-km performance, respectively. Lines with circular markers near FSS 5 0 are differences between the 2- and 4-km FSSs that used a

common analysis method (2 km minus 4 km).
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sizes in 1-km forecasts more closely matched observed

entity sizes than 3-km forecasts.

Regarding spatial skill, cool season 3- and 1-km pre-

cipitation forecasts had the highest FSSs and looked

most like each other, with 1-km forecasts typically

closer to observations than 3-km forecasts (Fig. 16).

Benefits of 1-km Dx were maximized in spring, where,

compared to the cool season, FSSs were lower and 3-

and 1-km forecasts looked less alike, but 1-km fore-

casts were substantially closer to observations than

3-km forecasts. Finally, 3- and 1-km summertime

forecasts produced the lowest FSSs and looked least

like each other but were equidistant from observa-

tions. These seasonal differences concerning sensi-

tivity to Dx were associated with forcing strength, with

1-km forecasts most likely to outperform 3-km fore-

casts when forcing was stronger (the spring and

cool season) and attendant precipitation entities

were larger (i.e., MCSs). During springtime, benefits

of 1-km forecasts were largest over southern regions,

where instability was greatest. Springtime and cool

season improvements from decreasing Dx from 3 to

1 km may represent a lower bound, given that many

settings, like number of vertical levels, were not op-

timized for 1-km Dx.
Why were benefits of 1-km Dx primarily confined to

larger springtime and cool season precipitation sys-

tems 3- and 1-km forecasts likely similarly resolve?

One possibility for this counterintuitive finding regards

predictability limits, which are constrained for local-

ized phenomena (e.g., Lorenz 1969). Moreover, Surcel

et al. (2017) suggested convection-allowing forecasts

over the central–eastern CONUS lose predictability

for scales , ;200 km after 18 h. Thus, if very local-

ized—even stochastic—processes on inherently un-

predictable scales govern placement of small precipitation

features, finer Dx should not be expected to yield im-

provements, despite presumably more realistic rep-

resentations of atmospheric processes. Conversely,

for larger, more predictable systems, like MCSs, im-

proved representation of physical processes afforded

by finer Dx may ultimately translate into forecast im-

provements, consistent with the greatest springtime

benefits of 1-km forecasts over the GMC and LMV

regions, where entities were relatively big. We note

that while Sobash et al. (2019) found these same 1-km

forecasts produced better next-day tornado guidance

than 3-km forecasts, there was no evidence better

1-km tornado forecasts were attributable to more

accurate placement of severe convection; rather, im-

proved physical representation of low-level rotation

in the 1-km forecasts likely was key to yielding better

tornado guidance than 3-km forecasts (e.g., Potvin

and Flora 2015).

Our results differ from previous work collectively

finding springtime forecasts with 4-km Dx had similar

skill as forecasts with 1- or 2-km Dx over the central–

eastern CONUS (e.g., K08; S09; Clark et al. 2012; J13;

Loken et al. 2017). Initial experimentation suggests

this disparity may be related to differences regarding

IC quality between previous studies and our work. Thus,

we encourage further research to examine whether

better-quality ICs enable greater benefits of decreasing

Dx toward 1 km.

We caution that our findings might be very different

for topographically diverse regions, where forecasts with

FIG. 16. Schematic diagram summarizing relationships of 3- and 1-km precipitation forecasts to each other and

observations during the springtime, summertime, and cool season, considering the entire CONUS east of the

Rockies. Blue lines represent a genericmeasure of distance, red circles labeled ‘‘obs’’ refer to ST4 observations, and

black vertical lines denote locations of 3- and 1-km forecasts with respect to each other and observations. Relative

forcing strength and entity size in each season are shown by arrows on the left.
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Dx5 1 km could still be beneficial compared to forecasts

with 3-km Dx under weak synoptic forcing. Moreover,

although Potvin et al. (2017) showed 2-h convection-

allowing forecasts were fairly insensitive to analysis

resolution for a few cases, it is unclear how our 18–36-h

results might change if 3- and 1-km forecasts are ini-

tialized from 3- and 1-km ICs, respectively, rather than

from coarse 0.58 GFS analyses. Furthermore, sensitivity

to Dx could itself potentially be sensitive to physics

choices, although our results based on reproducing S09’s

forecasts provide some hope this may not be the case.

The 1-km forecasts were 27 times more expensive

than the 3-km forecasts, and ultimately, individual users

must decide whether higher resolution warrants the

extra cost. As benefits of 1-km Dx were most pro-

nounced in unstable, strongly forced environments—

which are usually predictable days in advance—perhaps

our results could be leveraged to temporarily increase

convection-allowing model resolution in real-time sys-

tems when certain conditions are forecast.

Finally, 3-km ensembles will almost certainly out-

perform deterministic 1-km forecasts (e.g., Hagelin et al.

2017; Loken et al. 2017; Mittermaier and Csima 2017;

S17), unless 3-km Dx is fundamentally too coarse to

capture phenomena of interest. Thus, the trade-off be-

tween finer Dx and explicit probabilistic information

provided by ensembles should be carefully considered in

future research and operational NWP models.
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